Formation of Nanoscale Metallic Glassy Particle Reinforced Al-Based Composite Powders by High-Energy Milling
نویسندگان
چکیده
The initial microstructure and mechanical properties of composite powders have a vital role in determining the microstructure and mechanical properties of the subsequent consolidated bulk composites. In this work, Al-based matrix composite powders with a dense and uniform distribution of metallic glass nanoparticles were obtained by high-energy milling. The results show that high-energy milling is an effective method for varying the microstructure and mechanical properties of the composite powders, thereby offering the ability to control the final microstructure and properties of the bulk composites. It was found that the composite powders show a deformed layer combined with an undeformed core after milling. The reinforcements, metallic glass microparticles, are fractured into dense distributed nanoparticles in the deformed layer, owing to the severe plastic deformation, while in the undeformed core, the metallic glass microparticles are maintained. Therefore, a bimodal structure was obtained, showing a mechanical bimodal structure that has much higher hardness in the outer layer than the center core. The hardness of the composite particles increases significantly with increasing milling time, due to dispersion strengthening and work hardening.
منابع مشابه
Fabrication of TiC particulate reinforced Ni-50Fe super alloy matrix composite powder by mechanical alloying
Mechanical alloying is a powder metallurgy processing technique involving cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. In this work, NiFe-TiC composite powders were prepared by mechanical alloying process using planetary high-energy ball mill. The effect of TiC addition by weight percent on the NiFe solid solution formation, grain size, lattice paramet...
متن کاملHigh Energy Ball Milling - a Promising Route for Production of Tailored Thermal Spray Consumables
The high energy ball milling technique permits production of composite powders suitable for application in thermal spray processes. Different milling systems are compared concerning their potential for production of composite powder feedstock for spraying processes. Hard phase materials like carbides or oxides are incorporated into various metallic matrices including light weight alloys based o...
متن کاملEffect of Mechanical Milling on the Morphologyand Structural Evaluation of Al-Al2O3 Nanocomposite Powders
The morphological and microstructural changes during mechanical milling of Al powder mixed with 2.5, 5 and 10 wt.% Al2O3 particles were studied. The milling was performed in a planetary ball mill for various times up to 20 h. The produced composite powders were investigated using X-ray diffraction pattern (XRD) to elucidate the role of particle size, secondary phase content and milling time on ...
متن کاملEffect of Chromium Content on Formation of (Mo1-x-Crx) Si2 Nanocomposite Powders via Mechanical Alloying
(Mo1-x-Crx)Si2 composite powders were successfully synthesized by ball milling of Mo, Cr and Si elemental powders. Effects of the Cr content, milling time and annealing temperature were investigated. X-ray diffraction (XRD) was used to characterize the milled and annealed powders. The morphological and microstructural evolutions were studied by scanning electron microscopy (SEM) and transmissio...
متن کاملPreparation of Energetic Metastable Nano-Composite Materials by Arrested Reactive Milling M. Schoenitz, T. Ward and E.L. Dreizin
Highly metastable, nano-scale energetic materials were prepared by Arrested Reactive Milling (ARM). When reactive milling is carried out with materials systems suitable for SelfPropagating High Temperature Synthesis (SHS), reaction between the components occurs spontaneously and violently after a certain period of milling. In this research, metastable nanocomposites with high energy density, we...
متن کامل